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17.1 Introduction

Thunderstorms present a significant hazard to aviation, with elements such as turbulence,
strong winds, lightning, and hail posing risks to aircraft safety. These storms are particularly
prevalent in Europe during the summer months, coinciding with peak air traffic, and
frequently disrupt air traffic management (ATM) operations, causing widespread delays
across the network. In 2018 alone, weather-related delays in Europe were estimated to have
cost approximately €0.48 billion (Jardines et al., 2020, 2021). The ability to predict
thunderstorms allows traffic managers to plan effectively for adverse weather conditions,
thereby enhancing ATM operations and reducing associated costs.

Despite its importance, accurate thunderstorm forecasting remains a complex challenge.
While certain meteorological conditions are known to contribute to storm development,
predicting the precise timing and location of convective activity remains difficult. Short-term
forecasting, or nowcasting, is commonly used for thunderstorm prediction within a timeframe
of 1-3 hours. This technique relies on real-time data from sources like Doppler radars and
satellites to identify potential storm formations (Wilson et al., 1998). However, nowcasting
becomes less accurate over time. Numerical weather prediction (NWP) models, bolstered by
advancements in weather science and computational capabilities, have emerged as a
promising alternative. These models offer improved reliability and accuracy for severe
weather forecasting, enabling proactive decision-making to mitigate disruptions and reduce
costs (Jardines et al., 2020, 2021).
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The integration of artificial intelligence (Al) techniques with a deep understanding of atmospheric
physics has shown great potential for improving climate predictions, including thunderstorms
(Naik et al., 2024; Pandey et al., 2023; Rodriguez-Rodriguez et al., 2021; Zhou et al., 2020, 2022).
Machine learning (ML) methods, combined with data from satellites, Doppler radars, and NWP
models, have successfully supported short-term storm predictions within a 24-hour timeframe (Li
et al., 2019; Mecikalski et al., 2015). More advanced models, such as neural networks (NNs) and
deep NN, have extended the predictive horizon, improving forecasts for longer periods (Collins
& Tissot, 2015; He & Loboda, 2020; Saur, 2017; Simon et al., 201 8). Additionally, convolutional
neural newtorks CNNs have enhanced NWP-based forecasts of convective weather, offering
timeframes ranging from 6 hours to as much as three days (Zhou et al., 2019). Although these
methods have demonstrated success, existing models often lack the high temporal and spatial
resolution required for pretactical ATM operations. Current high-resolution forecasting tools
typically rely on physics-based models rather than ML, which limits their scalability and
geographical scope (Baldauf et al., 2011; Spiridonov et al., 2020). Jardines et al. (2020, 2021)
utilized multilayer perceptron neural networks (MLP NNs) in combination with NWP data to
address this gap. Although this approach proved effective for pretactical ATM operations, it faced
challenges related to significant computational complexity due to the large volume of input data.
To mitigate this, the training dataset size was reduced to 50% of the available data, despite studies
indicating that utilizing around 70% generally produces more accurate results. Further limitations
in Jardines et al.‘s methodology include the lack of a pre-trained initial model, the absence of k-
fold validation, and reliance on a dataset representing only one month, which restricts model
generalizability. These shortcomings underscore the need for further improvements, such as
refining data subset selection, employing unbiased initial conditions, and incorporating validation
strategies that enhance model performance (Beheshti et al., 2019). Jardines et al. (2024) further
enhanced their model by integrating CNNs to extract spatial features from weather data,
leveraging these features to improve the accuracy of storm predictions. This approach
demonstrated the potential of combining traditional NWP methods with advanced ML techniques,
particularly CNNs, to refine thunderstorm forecasting. However, their work also highlighted
certain limitations, such as the absence of k-fold validation, reliance on a dataset from only one
month, and issues related to computational complexity. These limitations underscore the need for
additional refinements to improve model generalizability and efficiency.

On the other hand, Data fusion has emerged as a critical method for optimizing the processing
and utilization of large datasets by combining diverse pieces of information to create more
accurate and compatible datasets (Nazarko, 2002). Its applications span various fields,
including military target tracking and recognition, machine vision, robotics, medical imaging,
and climate prediction (Mahdipour et al., 2016; Nazarko, 2002). The objective of data fusion
techniques is to integrate temporal information, synthesize dissimilar data, or combine similar
data from different sources to enhance reliability and accuracy. Inherent challenges, such as
inaccuracies and uncertainties in data due to sensing errors or the digitization of real-world
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phenomena, further highlight the importance of robust fusion methods (Mowrer & Congalton,
2003). By handling such uncertainties, these techniques mitigate the effects of outliers and
noise, ensuring more reliable outputs (Mahdipour et al., 2016, 2024).

As mentioned, satellite data stands out as a powerful tool for continuous monitoring of Earth
features, hazard management, change detection, and various other applications, as indicated
by numerous studies (Abaspur Kazerouni et al., 2021; Ghaderizadeh et al., 2022; Kosari et al.,
2020; Mahdipour et al., 2020a, 2020b; Mahdipour et al., 2024; Mohammadi et al., 2021;
Sharifi & Amini, 2015; Sharifi et al., 2015, 2016, 2022; Sharifi, 2021; Tariq et al., 2022;
Zamani et al., 2022). Studies have demonstrated its effectiveness in enhancing storm
prediction accuracy through its integration with ML and NWP models (Jardines et al.,
2020, 2021, 2024). Leveraging these insights, the fusion approach adopted in this paper
combines information from diverse sources to address data redundancies and improve
thunderstorm prediction performance.

Building on the foundation laid by Jardines et al. (2020, 2021, 2024), this study addresses the
key limitations of their storm prediction model by introducing several methodological
advancements aimed at reducing computational complexity and improving prediction
accuracy. The primary innovation involves applying a data fusion technique to preprocess
the input data by minimizing redundancies and extracting essential information. This step is
critical, as the vast and often repetitive input data from NWP models significantly leads to
computational inefficiencies. By employing a fusion method, the data is streamlined before
being fed into the fixed-structure NN, thereby reducing the computational burden without
sacrificing predictive capability. Additionally, this study proposes further enhancements to
optimize model performance. First, a more rigorous selection of training, validation, and
testing subsets ensures balanced data representation, a factor crucial for effective general-
ization. Second, initializing NN responses without preassigned weights helps to avoid biases
during the early training stages. This unbiased starting point is particularly advantageous for
minimizing the risk of converging on suboptimal solutions. Third, the application of nonlinear
normalization techniques, such as logarithmic and exponential transformations, to specific
input features addresses disparities in data scale and improves the learning efficiency of the
network. These techniques enhance the model's ability to capture subtle patterns and
relationships within the data that linear normalization methods might overlook. Finally, a
k-fold cross-validation strategy is incorporated to enhance the robustness of the proposed
method further. This strategy, crucial when working with limited datasets such as the one-
month data used in this study, ensures the model’s performance is consistently evaluated
across different subsets of the data. By rotating training and validation sets through k
iterations, this method not only reduces the risk of overfitting but also provides a more
comprehensive assessment of the model’s predictive capabilities. Together, these innovations
aim to strike a balance between reducing computational demands and maximizing the
accuracy and reliability of thunderstorm forecasting, addressing the challenges that limited
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previous methods. By combining advancements in data preprocessing, feature scaling, and
model validation, this proposed approach aims to establish a new benchmark in computational
efficiency and predictive accuracy for pre-tactical ATM.

The rest of this paper is organized as follows: Section 17.2 describes the dataset and outlines
the proposed methods and extensions. Simulation results and comparisons with existing
methods are presented in Section 17.3, followed by the conclusions in Section 17.4.

17.2 Materials and methods

This section explains the dataset, the architecture of the NN, data preparation, and the
proposed enhancements aimed at improving the prediction of thunderstorms. The improve-
ments focus on reducing computational complexity while maximizing prediction accuracy.

17.2.1 Data set

The data used for this research comes from previous studies (Jardines et al., 2020, 2021) and
is based on meteorological forecasts and satellite observations from June 2018. The
geographical domain spans large parts of Western Europe and northern Africa (see Fig. 17.1).

EUMETSAT, the European organization that operates weather satellites, provides the observa-
tional satellite data used in this study. EUMETSAT’s satellites are equipped with sophisticated
instruments that collect data critical for understanding atmospheric conditions. This information
is fundamental to the development of accurate WFs, and in this case, to model and predict
thunderstorms. For this research, the focus is on convection events in the atmosphere, which are
closely linked with thunderstorm formation. To predict such events, data from ensemble NWP
forecasts combined with satellite observations of thunderstorms are utilized.

NWP Forecasts: NWP models are used to simulate the behavior of the atmosphere and
generate WFs by solving partial differential equations that describe fluid motion and
thermodynamic properties of the atmosphere. These simulations account for a vast array of
physical parameters at multiple grid points over time. The NWP ensemble here comprises
predictions from 50 different members, and each member provides 23 features (see Fig. 17.2)
per grid point for the 25,521 locations being observed. The 23 features provide valuable
information regarding atmospheric properties, such as temperature, wind speed, pressure, and
moisture content. Each of these features plays a key role in forecasting thunderstorms by
identifying convective processes in the atmosphere.

Satellite Storm Observations: Satellite data collected through the Rapid Development
Thunderstorm (RDT) product provide high-resolution storm observations. This product, devel-
oped by Météo-France under the EUMETSAT NWC-SAF framework, processes cloud data from
geostationary satellites. The RDT provides details on cloud structures, including location,
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Figure 17.1
Geographical region covered by the forecast and observational data for storm prediction (Jardines
etal., 2020, 2027). Map lines delineate study areas and do not necessarily depict accepted national
boundaries.

movement, shape, and intensity of convective cells. To train the model, binary storm images are
created from these observations. A binary image represents areas where thunderstorms occurred
within a specified 15-minute interval. When creating training data for each hour, four 15-minute
images are merged to display stormy regions. Each pixel in the binary target image represents
whether a storm occurred within that timeframe (see Fig. 17.3 for an example).

17.2.2 Methodology

This study maintains the NN construction, parameters, and settings utilized in the research by
Jardines et al. (2020, 2021). The objective is to ensure fairness in comparisons while
proposing specific enhancements to improve the performance of the storm prediction model.
The architecture of the utilized NN is a MLP with two hidden layers, each containing 16
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Figure 17.2
The list of parameters used for the model input (Jardines et al., 2020, 2021), with normalization
techniques based on the features’ dynamic range. The features are categorized into three groups: low
dynamic range (using exponential normalization, as demonstrated by EXP), high dynamic range
(using logarithmic normalization, as illustrated by LOG), and normal range (using linear normal-
ization, as shown by LIN).

neurons, as depicted in Fig. 17.4. To reduce redundancy and computational overhead, a mean-
based fusion function is employed, which significantly simplifies the dataset by aggregating
the input values of the 50 ensemble members. While preserving the NN structure and other
critical parameters from the original study, additional configurations are determined through
an iterative trial-and-error approach. This ensures the network is optimized for the specific
dataset and prediction task. Below, the proposed innovations are systematically categorized
into minor and major methodological improvements. Mathematical formulations accompany
these enhancements to ensure transparency and reproducibility.

17.2.2.1 Minor proposed suggestions

The minor suggestions focus on improving dataset utilization, input feature processing, and
evaluation methodologies.
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Figure 17.3
Binary storm target for June 17, 2018, at 19:00, showing polygons where storms are located. Map
lines delineate study areas and do not necessarily depict accepted national boundaries.

5 l ‘Hidden Layer #2,
’,/ s e Rle

\\-\\‘- | ' /
utput Layer, € B!

Figure 17.4
Structure of the utilized multilayer perceptron (MLP) model to predict the storm.

1. Improved Data Partitioning: The dataset used in Jardines et al.’s previous works
(Jardines et al., 2020, 2021, 2024) was divided in a non-traditional way. The dataset was
divided into subsets spanning four days, employing a unique distribution strategy.
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Specifically, 50% of the data was designated for training purposes, 25% for validation, and
the remaining 25% constituted the test set. Such proportions risk under-representing critical
patterns in training. A more standard division would be 60%—-80% for training, with
10%—-20% each for validation and testing (Algahtani & Whyte, 2016; de Carvalho Paulino
et al., 2020; Guimaries & Shiguemori, 2019; Mahdipour et al., 2013; Sharifi et al., 2022).
In this study, the data for one month is split into weekly subsets. It means considering days
#3 to #9 as subset #1, days #10 to #16 as subset #2, days #17 to #23 as subset #3, and days
#24 to #30 as subset #4. For each subset, five days (about 71.4%) are used for training, one
day (14.3%) for validation, and one day (14.3%) for testing. Indeed, the sizes of the
training, validation, and testing datasets can be expressed as follows:

1Tl =0.741 x ISl, [VI=IEl = 0.143 x |S| 17.1)

where IT1, IVI, and |El are the sizes of the training, validation, and testing datasets,
respectively, and IS| is the size of a subset. This redistribution ensures greater general-
izability by maximizing the training data while preserving separate datasets for unbiased
evaluation. The revised methodology aligns more closely with established best practices
(Algahtani & Whyte, 2016; de Carvalho Paulino et al., 2020; Guimaraes & Shiguemorti,
2019; Mahdipour et al., 2013; Sharifi et al., 2022).

2. Normalization Strategies: Feature variability poses challenges for NN optimization by
causing gradients to skew during backpropagation. To address this, a two-stage normal-
ization strategy is applied. Firstly, nonlinear normalization will be applied to some input
features. Then, a linear normalization will be applied to all input features.

In the nonlinear normalization step, for features with low dynamic ranges, exponential
normalization enhances sensitivity. In this step, for features with high dynamic ranges,
logarithmic normalization reduces the influence of outliers. This nonlinear normalization step
can be expressed mathematically as follows:

Xexp—norm = €XP (x), x20 (17.2)
Xlog—norm = logx+1), x20 (17.3)

After applying the nonlinear normalization to some input features, all of the input features will
have a medium and acceptable dynamic range. Then, to standardize all features to zero mean
and unit variance, the linear normalization will be applied as follows:

Xnormalized =

; N (17.4)

These techniques ensure improved convergence during training by mitigating the uneven
contributions of individual features. Fig. 17.2 illustrates this normalization process,
categorizing features into three groups based on their dynamic ranges. Using nonlinear
normalization for both low- and high-dynamic range features ensures that the data is better
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suited for gradient-based algorithms. For example, exponential normalization prevents minor
variations from being overshadowed, while logarithmic normalization controls high dynamic
range. This balanced approach minimizes skewed gradient updates, improving model
convergence and overall accuracy.

17.3 Robust evaluation using k-fold cross-validation

Given the limited dataset (which spans only 1 month), k-fold validation is employed to
maximize data utilization while ensuring rigorous evaluation. In each fold, the dataset is
divided into k equal-sized subsets. The model is trained on k-1 subsets, and validation is
performed on the remaining one. This process repeats k times, and performance metrics are
averaged across folds:

k
Y. Performance;

Performance,,, = l
k 2 (17.5)

This systematic evaluation reduces bias and variance, ensuring reliable conclusions about
model performance and leveraging all available data efficiently.

17.3.1 Major proposed suggestions

The major suggestions emphasize optimizing computational efficiency and improving the
representational capacity of the NN.
1. Data Fusion for Redundancy Reduction: As illustrated in

Fig. 17.5 shows data from one month, comprising 30 days, with each day containing 24 hours
of information. WFs are generated at midday and midnight each day by 50 members. For
storm prediction, only the forecast information from the previous 36 hours is used.
Consequently, for each hour, three WFs from three different times are available, referred to
as information from three different ranges. For example, as shown in

Fig. 17.5, for the hour of 21:00, we consider weather forecasts (WFs) from today’s midday,
yesterday’s midnight, and yesterday’s midday, labeled as WF#1 with Range=9, WF#2 with
Range=21 (21=9+12), and WF#3 with Range=33 (33=9+24), respectively. Each WF consists
of predictions from 50 members for 25,521 grid points, with each member’s prediction for
each point containing 23 features. Consequently, the total number of features and digits to
process exceeds 63 billion, which is exceptionally high. Regarding the files used to train the
NN, which are from Python’s Pandas DataFrames type, including forecast predictions and
processed RDT observations as the target, each file is 142.063 MB in size. With three
different files corresponding to different ranges, the total data size for each hour (sample) is 3
x 142.063 MB = 426.189 MB, roughly equivalent to 0.4 GB per sample. Since the NWP data
in this research’s dataset is available for each point at each time by 50 members, it results in
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Figure 17.5

Structure of utilized input database in the research.

very redundant input data for storm prediction. Therefore, to reduce computational
complexity and improve classification performance, the first major idea involves fusing the
predictions of the 50 members for each point at each time and using the mean value of these
50 values. To this purpose, the 23 input features are categorized into two groups. The first
group of features, containing ‘“hour,“ “range,” and *“z,“ are fixed for all points of NWP
corresponding to each member at a specific time. The second group of input features,
containing 20 remaining input features that are changing for each point in the members'
predictions for each time, will be fused as follows:

1 50
Xfu = — Xi
fused = 51 El (17.6)

This process reduces the input data size by 50-fold while maintaining robustness by
mitigating outliers (Mahdipour et al., 2016, 2024; Nazarko, 2002). The block diagram of
this proposed suggestion is illustrated in detail in

Fig. 17.6. Totally, fusion serves multiple purposes:

* Noise Reduction: Averaging dampens the influence of outliers, stabilizing predictions.
* Dimensionality Reduction: Input data size is reduced by a factor of 50, leading to
exponential reductions in processing time (Arora & Barak, 2009; Cormen et al., 2022):

]i)rocessing & Vc{ata’ [>1 (177)
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Block diagram of the major proposed method, where the utilized data in each hour is expressed in
detail, where the effect of fusion is illustrated by showing the input and the output data structures.

Here, Tjrocessing 1 the computational time, and Vg, is the data volume. For example, if the
computational time for raw data (V,y, ) is 100 hours, reducing Vy,, to Vi,w/50 can decrease the

time to approximately V,,,/50". For instance, an initial data processing time of 100 hours
could decrease to less than 20 minutes after fusion when / = 1.5.

2. Addressing Sensitivity to Initial Weights: NNs often produce inconsistent results due to
sensitivity to initialization. To address this, the network is trained multiple times, each with
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random initialization of weights and biases (Li & Yeh, 2002; Mahdipour et al., 2013). The
final output is obtained as the mean or median of individual outputs:

M
Output Y. Output;

ensemble — M Z (17.8)

where M is the number of models' runs. This method ensures robustness by minimizing
dependency on specific initialization conditions. It is important to note that this idea, besides
some other ideas like k-fold validation strategy, can not be applied to the application without
the fusion idea due to a very high amount of computational complexity and duration time.

17.4 Results and discussion

The results presented in this study are derived from simulations conducted using a GPU-
accelerated high-performance computing system. The computational environment comprises
an Intel(R) Xeon(R) Gold 6238 R CPU with 64GB of RAM and an NVIDIA RTX A5000
GPU with 32GB memory, leveraging Python 3 alongside the TensorFlow deep learning
framework. GPU acceleration was implemented using Windows Subsystem for Linux (WSL),
enabling efficient utilization of computational resources. Despite these optimizations, certain
proposed methodologies necessitated extensive runtimes, particularly when applied to the full
dataset. For instance, the integration of initial-weight-free initialization and data rearrange-
ment strategies, applied consistently across PM-1, PM-2, and PM-3, requires over 101 days of
computation when applied to the full dataset. As a result, some extensions are evaluated using
a smaller subset of data to manage computational complexity.

For benchmarking purposes, two existing methods are considered: a baseline approach based
on an existing NWP-based convection indicator (Gonzalez-Arribas et al., 2017) and Method-
1, a robust storm prediction algorithm proposed in (Jardines et al., 2020, 2021). The baseline
provided a minimal-complexity reference, while Method-1 represented a state-of-the-art
comparison with significant computational demands.

Three proposed methods, referred to as PM-1, PM-2, and PM-3, are developed and evaluated.
Each method initially incorporated data rearrangement to ensure consistent and representative
partitioning into training, validation, and testing datasets. PM-1 was defined as applying the
NN to the unfused dataset. PM-2 utilized a fusion process, where 50 ensemble members of
weather predictions were averaged to create a reduced and more robust input dataset. PM-3
extended PM-2 by running the NN multiple times (10 repetitions) and selecting the median
output to enhance stability and accuracy.

The methodologies are examined in two phases. In the first phase, the effects of fusion, initial-
weight-free initialization, and data rearrangement are evaluated using the full dataset. In the
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second phase, k-fold validation and nonlinear normalization techniques are assessed using a
subset of the data due to their high computational requirements.

17.4.1

As mentioned, in this subsection, two extensions of initial weights, free and rearranging data
for two states, fusing 50 members’ NWPs by the mean function (PM-2 and PM-3) and not-
fusing (PM-1), are implemented. At the same time, they are applied to the entire dataset.
Simulation results show that the proposed methods perform better in terms of area under the
curve (AUC), true positive rate (TPR), and false positive rate (FPR), as presented in
Table 17.1 and Fig. 17.7. As can be seen, the proposed methods have better performance in
terms of storm detection compared to other methods. Although the computational complexity
in the PM-1 case is very high, PM-2 is faster, and its detection performance is also better than

Effects of fusion, initial-weight-free initialization, and data rearrangement

Table 17.1 Performance of the proposed methods in comparison to other methods.

Method %AUC %FPR %TPR Run time

Baseline (Gonzdlez-Arribas et al., 2017) 80.83913 12.44321 72.25637 Couple of minutes
Method-1 (Jardines et al., 2020, 2021) 95.28233 11.96384 90.74992 10 days

PM-1 95.40195 12.10917 90.94430 30 days

PM-2 95.75532 11.55979 91.76360 5:20°

PM-3 95.77761 11.04367 91.35065 5310

AUC, area under curve; TPR, true positive rate; FPR, false positive rate.
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that of PM-1. The cause of this performance improvement in all terms of comparison relates
to the benefits of fusion. The fusing operation reduces the effect of outliers on the output and
decreases redundancy very efficiently. Due to a decrease in the volume of input data by
approximately 98% (50 times), leading to substantial runtime reductions, the runtime in PM-2
has also decreased significantly. The results for PM-3 are very similar to those for PM-2, with
a slight improvement in storm detection and significant degradation in runtime.

In the case of range sensitivity, results are reported in Fig. 17.8. As can be seen visually,
increasing the range from 0-12 to 12-24 hours and then to 24-36 hours, the RUC
performance is decreased for all models (e.g., for PM-3 it decreases from 0.9598 to 0.9586
and then to 0.9547), except the “Baseline” method. This is because the “Baseline” method is
very simple and cannot accurately predict the total storm. It appears that “Baseline” has the
worst performance, and the performance degradation becomes more pronounced as the range
increases. While the performances of other methods for different time periods are very similar
to each other, it is challenging to distinguish the differences visually. The sensitivity of
Method-1 to range increases is slightly less than that of the Baseline. However, PM-1 is more
robust to range increment compared to both the Baseline and Method-1 methods. It seems it
relates to more training of the NN and better search by running multiple times. This
improvement is more pronounced in PM-2, as it utilizes fusion and reduces the outliers’ effect
on the output by averaging the results. And finally, PM-3 has the best robustness to range
increases and is even better than PM-2, due to its more thorough search for NN weights.

In terms of normalized output, reported in Fig. 17.9, the ideal output is the case of having two
separate and sharp distributions on 0 and 1 for the nonconvective (gray color) and convective
(red color) classes, respectively. Naturally, if the distributions have minimum coverage
(complete separately in the ideal case) and are sharper on points of 0 and 1 (or nearer to them),
it means better output in this term of comparison.

As can be seen in Fig. 17.9, the baseline method has the worst performance in this term too.
The performances of Method-1, PM-1, PM-2, and PM-3 seem the same, although the
distributions in the proposed suggestions cases (PM-1, PM-2, and PM-3) seem more separate
(slightly) and sharper (obviously). The sharpness is more sensitive for the nonconvective
class’s distribution and at the O point. The rank of understudying methods in this term is the
same as the AUC case (see Table 17.1).

For June 17, 2018, at 19:00 while the maximum storms are occurring, just to see the visual
results of the simulated methods, target and resulting storm prediction images of all simulated
methods (where they are binarized by considering the threshold value of 0.5) are presented in
Fig. 17.10. Although the baseline has the worst performance as can be seen in Fig. 17.10B, the
benefits of the proposed method cannot be found easily and visually in this case too. Indeed,
this term of comparison is a sample from the overall comparison that is done by AUC, FPR,
and TPR in Table 17.1, but the slight differences cannot be determined in this specific case.
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Figure 17.9
(A) Normalized output of Baseline; (B) Normalized output of Method-1; (C) Normalized output of
PM-1; (D) Normalized output of PM-2; and E) Normalized output of PM-3.

Regarding the results reported in Fig. 17.10, it is important to note that our input data is
unbalanced, with significantly less data related to storms compared to data without storms. In
cases where the minority class (storm data) is of higher importance and high accuracy for this



Improving thunderstorm prediction with neural networks using NWP and satellite data 389

Figure 17.10
Binary image of storms:(A) target and predicted by (B) Baseline method, (C) Method-1, (D) PM-1,
(E) PM-2, and (F) PM-3. Map lines delineate study areas and do not necessarily depict accepted
national boundaries.
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Table 17.2 Effect of k-fold validation and nonlinear normalization on the output, applied on a
subset of data.

Method %Classification accuracy Run time
Method-1 (Jardines et al., 2020, 2021) 91.36543 22°:49”
k-fold validation 93.42728 103’:51”
Nonlinear Normalization 91.96320 39:22”

class is desired, there is a risk of overestimation. To address class imbalance, techniques such
as over-sampling the minority class or assigning higher class weights can be employed.
Implementing cost-sensitive learning, which involves rewarding the minority class more (by
increasing the weight or importance of correctly predicting the minority class), can effectively
reduce overestimation. This method compensates for the higher misclassification costs of the
minority class without causing excessive overestimation. From another perspective, the
dataset used in this scenario contains information only about weather and storm events for one
month, rather than a large amount of redundant and computationally complex data. As
described in Section 17.2.1, given the limited information available, it is essential to
implement a k-fold validation strategy to ensure robust and reliable model performance. We
have utilized these techniques to compensate for overestimation, achieving good predictive
performance in storm prediction.

17.4.2 Effects of k-fold validation and nonlinear normalization

Since the remaining proposed suggestions, that is, k-fold validation and nonlinear normal-
ization, increase the computational complexity severely, they are applied only on a mini
subset of data. Therefore, in this case, the classification rate and running time are reported in
Table 17.2.

In the k-fold validation process, k is 6. As mentioned, the linear normalization cannot be
efficient for the features with very high or very low dynamic range. Therefore, in the first step
of normalization, the logarithmic and exponential functions are applied to some features as
demonstrated in Fig. 17.2. Then, in the second step of normalization, the linear normalization
(to have features with zero-mean and unit standard deviation) is applied to all features.

17.5 Conclusions

Convective air, known as a significant hazard, can be catastrophic for aircraft. Developing a
storm prediction model presents a new research opportunity where artificial NNs are
increasingly utilized. In recent studies, NWP has been used as input, with satellite image
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data serving as the desired output. This paper proposed several extensions and considerations
for improving NN applications in this context. The suggested improvements include
efficiently rearranging data to select training, validation, and test datasets; obtaining initial
weights-free responses; implementing a k-fold validation strategy; and applying nonlinear
normalization to certain input features. These strategies have been shown to enhance the
storm prediction system’s performance in terms of AUC, FPR, TPR, and classification
accuracy. However, fully implementing these suggestions would require more than 500 days,
making it impractical. To address this challenge, this paper proposed the use of a mean-based
fusion function at the feature level as an initial solution. This method significantly reduced
computational complexity by approximately 98% while also improving storm detection
performance. For instance, the classification rate improved by about 2% when k-fold
validation was applied.

Additionally, the mean-based fusion function reduced the model’s sensitivity to noise and
outliers and mitigated the impact of range increases. Future research directions include
exploring other fusion methods, extending the dataset to cover more than one month,
redesigning the NN using deep NNs, and incorporating spatial information. These approaches
could further enhance storm prediction capabilities and address the limitations highlighted in
this study.
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